全国创新争先奖推荐书

(推荐科技工作者个人用)

候选人:丁彬

所 在 单位: 东华大学

推 荐 渠 道: 中国科协先进材料学会联合体

推 荐 领 域: □疫情防控

□脱贫攻坚

☑基础研究和前沿探索

□重大装备和工程攻关

口成果转化和创新创业

□社会服务

中国科协先进材料学会联合体 2020 年 4 月

一、基本信息

推荐人选	姓名	丁彬	性别		男			
	民族	汉族	出生年月	1975	5年5月	9 日		
	国籍	中国	政治面貌		中共党员		V	
	最高学历	博士研究 生	最高学位	博士				
	行政级别		专业技术 职务		研究员			
	工作单位 及职务	东华大学纺织科技创新中心副主任						
γ d	学科领域	纺织	纺织材料 专业专		专业专士	É	纳米	纤维材料
	证件类型		证件号码					
	工作单位	事业 高	生贮标	工	作单位		上海主	1. 上 中 区
	性质	争业 问	守忧仪	行政区划		上海市长宁区		
	办公电话		手机			电子	邮箱	
	通讯地址				邮	7编		
联系	办公电话		手机			电子	邮箱	
人	通讯地址				邮	7编		
	疫情防控 □疫情防控							
	脱贫攻坚		□脱贫攻坚					
推	基础研究系	和前沿探索	□理科☑工科□农科□医科					
推荐	重大装备和工程攻关		□重大工程与装备□关键核心技术					
领域			□高超技艺技能					
	成果转化剂	成果转化和创新创业 □成果转化□创新创业			新创业			
	社会服务		□科学普及□科技决策咨询□国际民间科技交					
			流与合作□科技志愿服务□其他					

二、学习经历(从大学或职业教育填起,6项以内)

起止年月	校(院)及系名称	专业	学位
1994年09月-1998年07月	东北师范大学	应用化学	学士
2000年10月-2003年03月	韩国全北国立大学	高分子材料	硕士
2003年04月-2005年03月	日本庆应义塾大学	材料学	博士

三、主要工作经历(6项以内)

起止年月	工作单位	职务/职称
1998年07月-2000年09月	东北师范大学	助教
2005年06月-2007年03月	日本庆应义塾大学	COE 研究员
2007年04月-2008年06月	美国加州大学戴维斯分校	博士后
2008年07月-至今	东华大学	研究员

四、国内外重要社会任(兼)职(6项以内)

起止年月	名 称	职务/职称
2017年10月-至今	中国复合材料学会超细纤维复合材料分会	副主任
2018年 01 月-至今	中国复合材料学会微纳米复合材料专业委员会	副主任
2019年05月-至今	The Journal of The Textile Institute	编辑
2020年 03月-至今	《Engineering》环境与轻纺工程学科编委会	编委

五、主要成绩和突出贡献摘要

(应准确、客观、凝练地填写近3年内,在疫情防控、脱贫攻坚、基础研究和前沿探索、重大装备和工程攻关、成果转化和创新创业、社会服务等方面所作出的主要成绩和突出贡献的摘要。限500字以内。)

候选人一直从事功能纳米纤维材料的基础及应用研究,近三年在Nat. Commun. Sci. Adv.、Adv. Mater.、Angew. Chem. Int. Ed.等期刊发表SCI论文120余篇,获授权发明专利36项并转化5项。主持国家科技支撑计划课题、国家杰出青年科学基金等项目16项;入选教育部"长江学者"特聘教授及国家"万人计划"领军人才;获中国纺织工业联合会科技进步二等奖、中国纺织学术带头人等10余项奖励及荣誉称号。主要研究成果包括: (1) 极细纤维材料。提出了一种可宏量制备极细纤维的全新技术一"静电喷网",制备出具有蜘蛛网状结构、网中纤维直径<20nm(比传统纤维低三个数量级)的"纳米蛛网"纤维材料,从根本上突破了纤维难以细化的瓶颈,在环境治理、国防军工等领域具有广泛的应用价值。(2) 超柔陶瓷纤维材料。发明了"杂化凝胶纤维的低温陶瓷化"新方法,制备出十余种比丝绸更柔软的陶瓷纳米纤维膜,打破了陶瓷与高分子材料间的力学界限,并在高温隔热、全固态电池等领域实现了特效应用。(3) 纤维气凝胶。建立了"冰晶诱导纤维空腔化自组装"的新方法,制备出高分子、碳、陶瓷等多种超弹纤维气凝胶,其体积密度最低可达0.12mg/cm³,是迄今世界最轻固体材料,在热防护、保暖、吸音等众多领域具有巨大的应用潜力。

六、重要成果列表

(根据推荐领域,分别填写候选人获得的重要科技奖项,发明专利,代表性论文和著作,重大装备和工程相关重要成果,转化创业成果,重大科技类社会化公共服务产品等,按照上述顺序填写,总计不超过15项。)

<u> </u>					
序号	基本信息	本人作用和主要贡献			
' '	_ ' '' '	(限 100 字)			
1.	成果名称:美国纤维学会"杰出成就奖" 类别名称:国际级 排名:1/1 获奖年份:2014年 证书号码:无 主要合作者:无	创新性地提出了"静电 喷网"技术,突破了纤维难以 细化的瓶颈; 研制出柔性陶 瓷纳米纤维膜, 打破了陶瓷 与高分子材料间的力学界 限;建立了"冰晶诱导纤维空 腔化自组装"新方法,制备出 迄今世界最轻纳米纤维气凝 胶。			
2.	发明专利名称:一种静电直喷二维网状极 细纳米纤维材料及其制备方法 批准年份: 2019 年 专利号: ZL201710649196.0 发明人:丁彬 排名: 1/5 主要合作者:刘惠、张世超、印霞、俞建 勇	作为专利的第一发明人,负责本专利的整体规划设计,并提出了聚合物溶液静电直喷以制备二维网状极			
3.	发明专利名称:一种柔性氧化锰纳米纤维膜及其制备方法 批准年份:2016年 专利号: ZL201410369871.0 发明人:丁彬 排名:1/5 主要合作者:韩伟东、宋骏、毛雪、俞建 勇	作为专利的第一发明人,负责本专利的整体规划设计,并提出了结合均相溶胶静电纺丝和高温煅烧以制备柔性 MnO2 陶瓷纤维的新方法,有望突破传统 MnO2陶瓷纤维脆性大、抗拉强度低和产率不足的瓶颈。			
4.	发明专利名称:一种柔性氧化钛纳米纤维膜及其制备方法 批准年份:2016年 专利号:ZL201410369281.8 发明人:丁彬 排名:1/5 主要合作者:宋骏、毛雪、韩伟东、俞建	作为专利的第一发明人, 主要负责专利的第一发体技术规划, 并指导钛源前结构 分子链的互穿三维网状结构 设计, 以大幅提升纺丝氧液的分散稳定性, 为柔性高效的分散器提供了重要的技术基础。			

5.	发明专利名称:一种三维无机纤维基气凝 胶材料及其制备方法 批准年份: 2015 年 专利号: ZL201310201964.8 发明人:丁彬 排名: 1/7 主要合作者:黄美玲、斯阳、葛建龙、唐晓 敏、朱婕、俞建勇	作为专利的第一发规语 的第一发规语 为专利的第一发规语 对
6.	发明专利名称:一种三维碳纤维基气凝胶 材料及其制备方法 批准年份: 2015 年 专利号: ZL201310202293.7 发明人:丁彬 排名: 1/7 主要合作者: 唐晓敏、斯阳、葛建龙、黄美 玲、朱婕、俞建勇	作为专利的第一发明 人,负责本专利的整体规划 设计,并提出了由一维纤维 经三维网络重构获得体型碳 纤维基气凝胶的核心技术, 有望解决传统溶胶凝胶艺 原料种类单一、制备工艺复 杂和产率低的难题。
7.	论文名称: Direct Electronetting of High-Performance Membranes Based on Self-Assembled 2D Nanoarchitectured Networks 年份: 2019 年 排名: 通讯作者 主要合作者: 张世超、刘惠、唐宁、葛建龙、俞建勇 发表刊物: Nature Communications	作为该论文的通讯作 者,负责论文的整体规则 ,负责论文的整体规则 等 一种,是立控制泰式的 。 一种,通过控制模式 。 一种,通过控制模式 。 一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一
8.	论文名称: Highly Efficient, Transparent, and Multifunctional Air Filters Using Self-Assembled 2D Nanoarchitectured Fibrous Networks 年份: 2019年 排名: 通讯作者 主要合作者: 张世超、刘惠、唐宁、Nadir Ali、俞建勇 发表刊物: ACS Nano	作为该论文的通讯作者,负责论文的整体规划及 有责论文的整体规划及 实验设计,提出了利用静电 喷网技术构筑双组份二维纳 米网状纤维材料的新策略, 获得了力学性能优异的超 薄、高透光纳米蛛网,为新型 高效过滤材料的开发提供了 指导与借鉴。
9.	论文名称: Carbon-nanoplated CoS@TiO ₂ nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction 年份: 2019 年 排名: 通讯作者 主要合作者: 刘一涛、陈杏杏、俞建勇 发表刊物: Angewandte Chemie International	作为该论文的通讯作者,负责论文的整体规划及实验设计,提出了通过界面工程策略在柔性 TiO ₂ 陶瓷纳米纤维上构筑 CoS@TiO ₂ 异质结的新方法,为开发高效的非贵金属室温固氮催化剂提供了新思路。

	Edition	
10.	论文名称: Transformation of oxide ceramic textiles from insulation to conduction at room temperature 年份: 2020年 排名: 通讯作者 主要合作者: 闫建华、张苑苑、赵云、宋骏、夏书会、刘淑杰、俞建勇 发表刊物: Science Advances	作为该论文的通讯作者,负责论文的整体规划室 有负责论文的整体规划室 实验的建立了一提之一种 温缺陷调控的新方法,构筑 温用金属锂板还原作用构筑 柔性 TiO ₂ 纤维内部氧空拉缺 陷结构的策略,实现的快速 管温下从绝缘到导电的快速 转变。
11.	论文名称: Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality 年份: 2014年 排名: 通讯作者 主要合作者: 斯阳、俞建勇、唐晓敏、葛建龙 发表刊物: Nature Communications	作为该论文的通讯作者,负责论文的整体规划及实验设计,并提出了基于冰晶诱导纤维空腔化组装的原创性方法,以SiO2纳米纤维作为刚性支撑体制备出弹性气凝胶,获得了迄今世界最轻的固体材料。
12.	论文名称: Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity 年份: 2016年 排名: 通讯作者 主要合作者: 斯阳、王雪琴、闫成成、杨柳、俞建勇 发表刊物: Advanced Materials	作为该论文的通讯作 者,负责论文的整体规分 实验设计,提出了基础对 甘聚糖作为生物质基碳源的 甘聚糖作为生物质基碳 并思路,获得了超轻超辩的 碳基纳米纤维气凝胶材料, 为开发高灵敏度的可穿 致 子设备材料提供了新思路。
13.	论文名称: Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity 年份: 2018 年 排名: 通讯作者 主要合作者: 斯阳、王雪琴、窦绿叶、俞建 勇 发表刊物: Science Advances	作为该论文的通讯作 者,负责论文的整体规划硅 ,负责论文的整体规划硅 酸溶胶作为新型高温陶瓷粘 转剂的新思路,获得实验 管组分的高弹纤维气凝胶材 解决了传统陶瓷气凝胶材料 不可压缩的应用缺陷。
14.	著作名称:《静电纺丝与纳米纤维》 年份: 2011年 排名: 1 主要合作者: 俞建勇 出版社名称:中国纺织出版社	作为书籍的主编,负责 的整体规基础理论的 对的整术的基础理的 证明企业的 是面介绍结构、是 的种类与结构、是 的种类与结构。 是 的种类与结构。 是 的 的 的 的 的 的 的 的 的 是 的 的 是 的 的 是 的 的 的 的 的 。 是 的 的 的 的

著作名称:《功能静电纺纤维材料》

年份: 2019年

15. 排名: 1

主要合作者: 俞建勇

出版社名称:中国纺织出版社

作为专著的第一作者, 负责该书的整体规划年在静电 说计者近20年在静电础 了作者近20年在静电础 取得的基本, 统果及产业化应用情况 没有 发展趋势, 为我国学术界 工业界在该领域的研究是 上业界在该领域的研究提供 了重要参考。